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Abstract. The two-band Hubbard model involving subbands of different widths is investigated via
finite-temperature exact diagonalization (ED) and dynamical mean field theory (DMFT). In contrast to
the quantum Monte Carlo (QMC) method which at low temperatures includes only Ising-like exchange
interactions to avoid sign problems, ED permits a treatment of Hund’s exchange and other onsite Coulomb
interactions on the same footing. The role of finite-size effects caused by the limited number of bath
levels in this scheme is studied by analyzing the low-frequency behavior of the subband self-energies as
a function of temperature, and by comparing with numerical renormalization group (NRG) results for a
simplified effective model. For half-filled, non-hybridizing bands, the metallic and insulating phases are
separated by an intermediate mixed phase with an insulating narrow and a bad-metallic wide subband.
The wide band in this phase exhibits different degrees of non-Fermi-liquid behavior, depending on the
treatment of exchange interactions. Whereas for complete Hund’s coupling, infinite lifetime is found at the
Fermi level, in the absence of spin-flip and pair-exchange, this lifetime becomes finite. Excellent agreement
is obtained both with new NRG and previous QMC/DMFT calculations. These results suggest that-finite
temperature ED/DMFT might be a useful scheme for realistic multi-band materials.

PACS. 71.20.Be Transition metals and alloys – 71.27+a Strongly correlated electron systems; heavy
fermions

1 Introduction

Strongly correlated materials exhibit a wealth of fascinat-
ing physical phenomena associated with complex single-
electron and many-electron interactions. Transition metal
oxides, for example, tend to have partially filled shells of
highly correlated d electrons, surrounded by complicated
lattice geometries, with many atoms and electrons per unit
cell. The theoretical description of the electronic proper-
ties of these materials is a challenging topic in condensed
matter physics. Significant advances were achieved during
recent years via the dynamical mean field theory (DMFT)
[1,2] which provides a treatment of single-electron and
many-electron interactions on the same footing.

For realistic materials, DMFT has been used exten-
sively in combination with the quantum Monte Carlo
(QMC) method [3]. This approach has the advantage that
it can be readily applied to systems consisting of two or
more subbands. It has the drawback, however, that, to
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avoid sign problems at low temperatures, it includes only
Ising-like exchange interactions [4]. Improvements of the
QMC method to include the full Hund’s coupling are so
far limited to T = 0 or rather high temperatures [5–7]. In
view of this limitation there is clearly a need to explore
alternative methods that are applicable to multi-band ma-
terials and complete onsite exchange interactions.

The aim of the present work is two-fold: first, exact
diagonalization (ED) [1,8] is proposed as a potentially
highly useful impurity solver for finite-T DMFT studies of
realistic systems. The attractive feature of this approach
is that, in contrast to finite-T QMC, onsite Coulomb and
exchange interactions are treated on the same basis. Sec-
ond, we apply finite-T ED/DMFT to a highly nontrivial
system which has recently received considerable attention,
namely, the two-band Hubbard model consisting of sub-
bands of different widths [5,6,9–21]. The phase diagram
of this system was recently evaluated in references [16,17].
Here we focus on the electronic properties of the so-called
orbital-selective phase in which the narrow band is insu-
lating while the wide band is still metallic. To examine
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the influence of finite-size effects in the ED approach, and
to investigate the electronic properties in the limit of low
temperatures, we have also performed numerical renor-
malization group (NRG) DMFT calculations for a sim-
plified effective model which is particularly suited for the
intermediate phase.

The main result of this paper is that the two-band
ED/DMFT calculations provide a correct picture of
the electronic properties of the Hubbard model involv-
ing nonequivalent subbands, including the unusual non-
Fermi-liquid properties of the orbital-selective phase. This
outcome is remarkable since, for computational reasons,
the number of bath levels per impurity orbital is neces-
sarily smaller than in analogous one-band models. Never-
theless, despite this limitation, the ED results are in good
qualitative or, in some cases, quantitative agreement with
the NRG results. In the Ising case they also agree very
well with previous QMC/DMFT results [13,21].

The overall consistency with the NRG and QMC cal-
culations suggests that finite-T ED/DMFT might indeed
be very useful in the future to analyze realistic materials,
especially, if full diagonalization is replaced by finite-T
Lanczos methods [22,23] in order to be able to deal with
larger cluster sizes.

Hubbard models involving nonequivalent subbands
are relevant for compounds such as Ca2−xSrxRuO4 and
NaxCoO2, where, as a result of the nearly two-dimensional
lattice structure, coexisting narrow and wide bands arise
naturally. Thus, onsite Coulomb energies can be simulta-
neously large and small relative to the widths of important
subbands. As a function of doping concentration, both ma-
terials give rise to a remarkably rich sequence of phases,
including superconductivity and Mott insulating behav-
ior [24,25]. Evidently, the competition between multiple
kinetic energy scales and local Coulomb and exchange en-
ergies is an important feature of these strongly correlated
systems.

A consistent treatment of Coulomb and exchange in-
teractions in materials of this kind is important since it
has recently become clear that the Hund’s coupling has
a decisive influence on the nature of the Mott transi-
tion [5,14,16,18,19,26]. In fact, the different treatments
of exchange terms in earlier finite-T QMC [10,11,13] and
zero-T ED [12] calculations have given rise to some confu-
sion, with apparently contradictory results. As was clar-
ified in reference [14] for T = 0 and in reference [16] for
T > 0, however, the QMC and ED results are in agree-
ment provided that exchange interactions are treated in
the same manner. Thus, for full Hund’s coupling the two-
band Hubbard model exhibits successive first-order tran-
sitions. In striking contrast, in the absence of spin-flip
and pair-exchange only the lower transition remains first-
order [13,16,20].

Moreover, as will be discussed in detail below, the na-
ture of the intermediate phase depends in a subtle man-
ner on the treatment of exchange interactions. In this re-
gard the ED and NRG results yield the following picture:
for full Hund’s coupling, the wide band has infinite life-
time at EF but does not satisfy Fermi-liquid criteria at

finite frequencies. This finding is consistent with recent re-
sults obtained by Biermann et al. [21] in T = 0 two-band
ED/DMFT calculations. For Ising exchange, instead, cor-
relations are significantly enhanced and the lifetime be-
comes finite even at EF , in agreement with QMC calcula-
tions [13,21].

Thus, the Mott transition in the Hubbard model in-
volving different subbands does not consist of equivalent
sequential transitions. Instead, when the narrow band be-
comes insulating, the wide band is forced into a bad-
metallic state whose deviations from Fermi-liquid behav-
ior depend in a qualitative manner on the treatment of
exchange interactions.

In the past, finite-T ED/DMFT methods have been
applied mainly to single-band cases, where the incorpo-
ration of an appropriate cluster of bath levels is feasible.
Throughout this paper we consider two impurity levels,
each surrounded by either 2 or 3 bath levels, giving total
cluster sizes ns = 6 or ns = 8 per spin. Below we demon-
strate that even a cluster size of ns = 6 provides qual-
itatively correct subband self-energies. For instance, at
T = 10 meV the critical Coulomb energies of the orbital-
selective Mott transitions for ns = 6 differ by only about
0.1. . . 0.2 eV from those derived for ns = 8. This finding
is interesting since it suggests that finite-T ED/DMFT
calculations for more realistic three-band models using a
cluster size of ns = 9 (three impurity levels, each coupled
to two bath levels) should be useful. This would allow one
to re-examine the Mott transition in systems that have
been studied previously using QMC/DMFT for Ising ex-
change interactions.

A more accurate representation of low-frequency prop-
erties at low temperatures requires three bath levels per
impurity orbital: one near the Fermi level to provide ad-
equate metallicity, and two for the upper and lower Hub-
bard bands, giving ns = 8 per spin. This extension leads to
a significant reduction of finite-size effects. Several com-
parisons of results for ns = 6 and ns = 8 are provided
below to illustrate the range of applicability of the two-
band ED/DMFT approach.

The outline of the paper is as follows: In Section 2 the
multiband Hubbard model is specified and its numerical
solution via the finite-T exact diagonalization method is
discussed. Section 3 describes the effective model used in
the NRG approach to evaluate the electronic properties of
the wide band in the intermediate phase when the narrow
band is insulating. In Section 4 the ED/DMFT is applied
to the purely metallic phase just below the first Mott tran-
sition. Section 5 deals with the intermediate phase in the
presence of full Hund’s coupling, where wide band exhibits
infinite lifetime at EF , combined with non-Fermi-liquid
behavior at finite frequencies. In Section 6 this interme-
diate phase is considered in the absence of spin-flip and
pair-exchange terms, giving rise to finite lifetime even at
EF . In Section 7 the two-band ED approach is applied to
the case studied previously within QMC/DMFT [13]. Sec-
tion 8 presents analogous results for the case considered
recently within QMC/DMFT by Biermann et al. [21]. Sec-
tion 9 contains a brief discussion of iterated perturbation
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Fig. 1. Level diagram for ED scheme. Blue lines: impurity
levels; red solid (plus dashed) lines: bath levels for ns = 6 (ns =
8). Green lines: Coulomb and exchange interactions between
impurity levels; red dotted lines: hopping interactions between
impurity and bath levels.

theory (IPT) DMFT results for the two-band model and
Section 10 provides a summary and outlook.

2 Multiband exact diagonalization method

The two-band Hubbard model for non-equivalent sub-
bands is represented by the Hamiltonian:

H = H0 + H1 + H2

H0 =
∑

lmiσ

tlmic
+
liσcmiσ

H1 =
∑

li

Unli↑nli↓ +
∑

lσσ′
(U ′ − Jδσσ′ )nl1σnl2σ′

H2 = −J ′ ∑

l

[c+
l1↑cl1↓c+

l2↓cl2↑ + H.c.]

−J ′ ∑

l

[c+
l1↑c

+
l1↓cl2↑cl2↓ + H.c.] , (1)

where c+
liσ and cliσ are creation and annihilation opera-

tors for electrons at site l in orbital i = 1, 2 with spin
σ and nliσ = c+

liσcliσ . H.c. denotes Hermitian conjugate
terms. H0 is the single-particle Hamiltonian which we
represent by half-filled, non-hybridizing bands with den-
sity of states Ni(ω) = 2/(πDi)

√
1 − (ω/Di)2 and widths

W1 = 2 eV, W2 = 4 eV, where Wi = 2Di. H1 repre-
sents the anisotropic, Ising-like onsite Coulomb and ex-
change interactions and H2 additional spin-flip and pair-
exchange contributions. For isotropic Hund’s coupling one
has J ′ = J = (U − U ′)/2. Below, we discuss results for
J ′ = J as well as J ′ = 0. The latter case corresponds to the
Ising-like exchange treatment in previous QMC/DMFT
calculations [11,13].

The ED/DMFT results are derived from a two-
band generalization of the approach employed for single
bands [1,8]. The effective Anderson impurity Hamiltonian
includes impurity levels ε1,2 and bath levels εk=3...ns (see
Fig. 1). For particle-hole symmetry ε1,2 = 0. Each impu-
rity level interacts with its own bath, so that for ns = 6
impurity level 1 couples to bath levels 3, 4 with ε4 = −ε3,
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Fig. 2. Zi(U) as a function of U for J = J ′ = U/4 at
T = 10 meV, calculated within ED/DMFT for different cluster
sizes: (a) ns = 8; (b) ns = 6. Solid (red) curves: narrow band,
dashed (blue) curves: wide band.

while level 2 couples to bath levels 5, 6 with ε6 = −ε5. For
ns = 8 impurity levels 1, 2 couple in addition to the bath
levels ε7 = 0 and ε8 = 0, respectively.

Since at T > 0 all states of the impurity Hamiltonian
are used in the construction of the subband Green’s func-
tions, for ns = 6 the largest matrix to be diagonalized
corresponds to the sector n↑ = n↓ = 3, with dimension
[ns!/((ns/2)!)2]2 = 400. For ns = 8 this dimension in-
creases to 4900. We neglect hybridization between bands,
so that self-energies and Green’s functions are diagonal in
orbital space. Denoting eigenvalues and eigenvectors of the
impurity Hamiltonian by Eν and |ν〉, the subband Green’s
functions are evaluated from the expression

Gi(iωn) =
1
Z

∑

νµ

|〈ν|c+
0iσ |µ〉|2

Eν − Eµ − iωn
[e−βEν + e−βEµ]. (2)

Here, β = 1/kBT , ωn = (2n + 1)π/β are Matsubara fre-
quencies, and Z =

∑
ν exp(−βEν) is the partition func-

tion. l = 0 denotes the impurity site. Since we consider
only paramagnetic phases the spin index of Green’s func-
tions and self-energies is omitted for convenience. Be-
cause of the particle-hole symmetry of the present system,
Green’s functions and self-energies are purely imaginary
quantities.
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To provide an overview of the Mott transitions in
this model and to illustrate the sensitivity of the crit-
ical Coulomb energies to the cluster size used in the
ED/DMFT, we show in Figure 2 the quantities Zi(U) =
1/[1 − Im Σi(iω0)/ω0] for ns = 6 and ns = 8 at T =
10 meV, assuming J ′ = J = U/4. Here Σi(iω0) are the
subband self-energies at the first Matsubara frequency.
Thus, for isotropic Hund’s exchange and ns = 8, Uc1 ≈
2.1 eV and Uc2 ≈ 3.1 eV. (In our notation the Uci=1,2

refer here to the subband critical Coulomb energies for
increasing U and should not be confused with the sta-
bility boundaries for increasing vs decreasing U at the
individual Mott transitions.) Near both critical Coulomb
energies Zi(U) exhibit hysteresis behavior characteristic
of first-order transitions. For ns = 6, the common metal-
lic phase is stable only up to about Uc1 ≈ 2 eV. Thus,
inclusion of zero-energy bath levels supports the metallic
character of the DMFT solution. A shift of about 0.2 eV
is found for Uc2 where the wide band becomes insulating.
These shifts are consistent with single-band ED/DMFT
results[16] upon increasing ns from 3 to 4; only minor ad-
ditional shifts occur in this case between ns = 4 and the
fully converged results for ns = 6.

According to the QMC/DMFT results discussed in ref-
erence [13], the Mott transitions for J = U/4 and J ′ = 0,
i.e., for Ising-like exchange, are located at Uc1 ≈ 2.1 eV
and Uc2 ≈ 2.7 eV. Moreover, apart from the shift of
Uc2, this transition is no longer first-order. The two-band
ED/DMFT results in reference [16] for ns = 6 confirmed
this fundamental difference between the J ′ = J and J ′ = 0
treatments.

As will be discussed in detail below, the wide band in
the intermediate phase, i.e., for Uc1 < U < Uc2, does not
satisfy Fermi-liquid criteria. Thus, the fact that Z2(U)
as defined above is finite in this region does not imply
existence of ordinary quasiparticles. In the case of full
Hund’s coupling, the imaginary part of the self-energy of
the wide band vanishes in the low-frequency limit, but
does not increase linearly at small iωn, implying non-
quadratic variation at real frequencies. For Ising-like ex-
change, ImΣ2(iωn) remains finite for ωn → 0, implying
finite lifetime even for states at EF . Plots like those in
Figure 1 are nevertheless useful since they permit a conve-
nient identification of phase transitions. Thus, Zi(U) → 0
at Uci indicates that the narrow or wide subbands become
insulating for U > Uci, respectively. (Of course, due to the
discrete representation along the imaginary frequency axis
at finite T , Zi(U) does not fully vanish.)

To check the convergence of the ED results with clus-
ter size ns we compare them with NRG calculations for
an effective model which is most suitable for the interme-
diate phase and which is specified in the following section.
Since the narrow band is insulating in this phase one of
the key features of the effective model is the omission of
one-electron hopping in the narrow band. Accordingly, the
upper and lower Hubbard peaks will be centered at about
±U/2, but the influence of their width is neglected. (In a
local description, the width of the Hubbard bands is ap-
proximately given by W [1].) In Figure 3 we show that
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Fig. 3. Imaginary part of self-energy of wide band in in-
termediate phase for decreasing widths W1 of narrow band,
with fixed W2 = 4 eV, U = 2.4 eV, ns = 8, T = 10 meV.
Alternating solid (red) and dashed (blue) curves: W1 =
0.4, 0.8, 1.2, 1.6, 2.0 eV (from bottom). (a) J = J ′ = U/4;
(b) J = U/4, J ′ = 0.

this approximation indeed has only a minor effect on the
electronic properties of the metallic wide band. Keeping
W2 = 4 eV fixed and changing W1 between 0.1 W2 and
0.5 W2, we notice that, both for isotropic and anisotropic
exchange coupling, the self-energy of the wide band at
U = 0.6 W2 = 2.4 eV is almost unaffected by the orig-
inal single-particle width of the insulating narrow band.
The detailed electronic properties of these phases will be
discussed in Sections 5 and 6.

3 Numerical renormalization group approach
for simplified effective two-band model

In the limit of an insulating narrow band interacting with
a metallic wide band, the two-band model can be sim-
plified to an effective model by eliminating the high en-
ergy states associated with the upper and lower Hubbard
bands of the narrow band [21]. Neglecting the one-electron
hopping in the narrow band, i.e., assuming W1 = 0, and
fixing the occupations of these orbitals, the terms in equa-
tion (1) involving interorbital Coulomb and pair-exchange
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interactions disappear. The effective Hamiltonian then re-
duces to

H =
∑

lmσ

tlmc+
lσcmσ + U

∑

l

nl↑nl↓

−
∑

l

[2JSz
l sz

l + 2J ′(S+
l s−l + S−

l s+
l )]. (3)

In this model, the low energy degrees of freedom of the
narrow band are represented by local moments Sl. These
interact ferromagnetically with the local spin density sl

of the wide-band conduction electrons which are also sub-
ject to a local Coulomb repulsion U . The model corre-
sponds to a double-exchange model with Coulomb inter-
actions amongst the itinerant electrons or, equivalently,
to the ferromagnetic Kondo lattice model with interac-
tions in the band. The antiferromagnetic case, J < 0,
for U = 0, has already been investigated in the context
of heavy fermions [27]. We adapt these calculations to
the case of interest here, namely, ferromagnetic exchange,
J > 0, and U > 0. The equivalence between the full two-
band model and the effective model holds provided U is
large enough so that a description of the low energy de-
grees of freedom of the narrow band in terms of local mo-
ments is possible and provided that J ′ � U/2. The latter
condition corresponds to eliminated excited states of the
full model being far from the first excited state of the
effective model. Unless J is chosen to be very small, we
see that for realistic values of J ≈ U/4, the equivalence
will hold well for Ising exchange coupling (J ′ = 0) but less
well for isotropic Hund’s coupling (J ′ = J). In either case,
the effective model should be increasingly accurate in the
limit ω, T → 0.

Within DMFT, we need to solve an effective quantum
impurity model corresponding to a S = 1/2 Kondo impu-
rity coupled ferromagnetically with conduction electrons
subject to a local Coulomb repulsion:

H =
∑

k,σ

εkc+
kσckσ + Un0↑n0↓

− 2JSz
0sz

0 − 2J ′(S+
0 s−0 + S−

0 s+
0 ) . (4)

We solve this model using the numerical renormalization
group method [28], which allows calculation of dynamical
quantities on the real energy axis at both zero and finite
temperature [29,30]. The impurity self-energy Σ(ω) is cal-
culated using the method described in reference [33]. For
comparison with ED, it is then evaluated on the imaginary
axis z = iω by analytic continuation

Σ(iω) = − 1
π

∫ +∞

−∞
dω′ Im Σ(ω′)

iω − ω′ . (5)

The calculations use a logarithmic discretization of the
conduction band εkn → ±D2Λ

−n−1
2 with Λ = 1.5 and we

retain of order 600 states per NRG iteration. Details of
the calculation of spectra and other dynamical quantities
can be found in references [29,34].

The effective model specified in equation (3) allows
the non-Fermi-liquid physics of the intermediate phase of
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Fig. 4. Imaginary part of subband self-energies in metallic
region for J = J ′ = U/4 at T = 2.5 meV. Solid (red) curves:
narrow band, dashed (blue) curves: wide band. From top: U =
1.8, 1.9, 2.0, 2.1 eV. (a) ns = 8; (b) ns = 6.

the two-band model to be understood qualitatively [21].
The case of Ising exchange (J ′ = 0) describes interacting
conduction electrons scattering from a disordered static
configuration of local spins with Sz

l = ±1/2. The disor-
der potential is proportional to the Ising exchange J . The
conduction electrons therefore have a finite lifetime at the
Fermi level even at T = 0, as is characteristic of a disor-
dered metal. Switching on the spin-flip part of the Hund’s
exchange gives the disordered spin configuration some dy-
namics at finite temperature, but as long as J ′ < J , we
expect from the ferromagnetic Kondo model that the spin-
flip part of the Hund’s exchange will renormalize to zero
at low temperature with the Ising part of the Hund’s ex-
change remaining finite. At T = 0, the system will again
be disordered with a disorder potential given by the finite
Ising part of the Hund’s exchange. This results in a finite
lifetime for the conduction electrons at T = 0.

The situation changes for isotropic Hund’s exchange
(J ′ = J). In this case, the ferromagnetic exchange in the
effective impurity model (4) is known to be marginally
irrelevant [31,32]. Thus, both Ising and spin-flip parts of
the Hund’s exchange renormalize to zero and there will be
no disorder scattering at T = 0, giving rise to an infinite
lifetime for the conduction electrons at T = 0. The van-
ishing of the self-energy at ω = T = 0 also implies that
the narrow-band spectral function satisfies a pinning con-
dition at ω = T = 0. In Sections 5 and 6, these qualitative
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considerations will be seen to be in accord with the nu-
merical results from ED for the full two-band model and
NRG results for the simplified effective model.

4 Metallic phase

We begin our discussion of the multi-band ED results with
the region in which both subbands are metallic, just below
the Mott transition associated with the narrow band. To
illustrate the applicability of the ED approach this region
is very useful since it involves important redistribution
of spectral weight between low and high frequencies that
must be captured properly in order to describe the Mott
transition.

Figure 4 shows a comparison of the subband self-
energies for ns = 8 and ns = 6 in the region close to
the lower critical Coulomb energy for T = 2.5 meV. For
ns = 8, the Σi(iωn) vary roughly linearly at low frequen-
cies, indicating that both bands are metallic. Of course,
the narrow band is more strongly correlated than the wide
band. The spacing between the lowest excited state and
the ground state energy in these calculations is typically
1–2 meV, i.e., evaluation of the self-energies in this low
temperature range is indeed meaningful.

The results for ns = 6 are similar, except that the
self-energy of the narrow band at U = 2.1 eV is inversely
proportional to iωn, indicating that the Mott transition in
this case is located between U = 2.0 eV and U = 2.1 eV.
In addition, at the lowest Matsubara frequencies the self-
energy of the wide band at 2.1 eV exhibits deviations from
linear iωn variation. These deviations are related to finite-
size effects and will be analyzed in more detail in the next
section when we discuss the intermediate orbital-selective
phase. Just below the transition for ns = 6, at U = 2 eV,
very small deviations from approximately linear iωn vari-
ation can also be seen in both Σi(iωn).

It is remarkable that the ED results for ns = 8 capture
the correlation effects in the common metallic phase of
both subbands very well until close to Uc1 and down to
rather low temperatures. This result is not at all obvious
since so close to the Mott transition a large fraction of the
spectral weight of the narrow band is transfered from the
Fermi level to the Hubbard bands. Even the results for
ns = 6 are qualitatively correct. The main effect of the
cluster size ns = 6 is the underestimate of Uc1 by about
0.1 eV. According to the single-band results [16] inclusion
of the zero energy bath levels in the ns = 8 cluster should
provide the most important part of the shift towards the
correct Uc1. In addition these extra bath levels yield an
excellent representation of the metallic properties of both
subbands right up to the critical Coulomb energy.

Of course, slight finite-size effects should be manifest
also in the low-temperature ED results for ns = 8. The
precise form of Σi(iωn) at very low frequencies and tem-
peratures, in particular, the range of true Fermi-liquid be-
havior in the immediate vicinity of Uc1, can only be inves-
tigated by more accurate methods, such as a full two-band
extension of the NRG approach which is applicable at zero
and finite T [35].
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Fig. 5. Imaginary part of subband self-energies in inter-
mediate phase, for U = 2.4 eV and J = J ′ = U/4. T =
2.5, 5, 10, 20, 30 meV (from bottom). (a) ns = 8; (b) ns = 6.

We emphasize that this region of the T/U phase dia-
gram for isotropic Hund’s exchange is not yet accessible
using QMC calculations. It would therefore be of great in-
terest to extend the present results to ns = 9 and ns = 12
in order to explore the strongly correlated metallic phase
of realistic three-band materials which have so far been
investigated only for Ising-like exchange interactions. A
more detailed comparison of the role of Hund vs. Ising
exchange treatments in the metallic phase of the present
two-band model will be given elsewhere [36].

5 Intermediate phase: isotropic Hund’s
exchange

As shown first by Koga et al. [12] within ED/DMFT cal-
culations at T = 0, the two-band Hubbard model with full
Hund’s exchange interaction exhibits successive, orbital-
selective Mott transitions. In reference [16] we proved that
analogous ED calculations at finite temperature are con-
sistent with these findings, revealing sequential first-order
transitions associated with the two subbands. In this sec-
tion we discuss in more detail the low temperature prop-
erties of the intermediate phase between the fully metallic
and insulating phases.

Figure 5 shows the subband self-energies for a Coulomb
energy U = 2.4 eV, i.e., between the lower and upper
Mott transitions. The results for ns = 8 demonstrate that
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the narrow band is insulating, i.e., its self-energy is in-
versely proportional to iωn at low frequencies. Σ1(iωn)
is also nearly independent of temperature in the range
T = 2.5 . . . 30 meV, suggesting that the Mott gap is con-
siderably larger. The self-energy of the wide band, how-
ever, extrapolates to zero at low frequencies, indicating
metallic behavior. These results suggest that the pinning
condition N2(0) = A2(0) is satisfied, i.e., the spectral den-
sity at EF of the interacting system coincides with that of
the non-interacting system. Because of the rapid increase
of Im Σ2(iωn) at small ωn, the spectral distribution of the
wide band in the intermediate phase consists of a very
narrow peak at EF and large upper and lower Hubbard
bands. Nevertheless, as will be discussed further below,
the comparison with the NRG results indicates that this
band does not satisfy true Fermi-liquid behavior.

The results for ns = 6 shown in Figure 5b agree qual-
itatively with those for ns = 8. The self-energies of the
narrow band are nearly identical, with only a slightly
larger dependence on temperature in the case ns = 6.
The main difference is that Σ2(iωn) at low T and small
iωn exhibits larger deviations as a result of finite-size ef-
fects. This is plausible since, as discussed above, the wide
band is metallic, but highly correlated. The pronounced
three-peak structure of its spectral function is therefore
not represented accurately by only two non-zero bath lev-
els per impurity orbital in the ED calculation for ns = 6.
The extra bath level with zero energy included for ns = 8
therefore plays a crucial role for a proper description of
the metallic behavior of the wide band for full Hund’s
coupling.

Figure 6 shows the subband Greens functions Gi(iωn)
in the intermediate phase at various temperatures. ImG1

is linear in ωn at low frequencies, as expected for the in-
sulating subband. Although the wide band exhibits clear
signs of finite-size effects at small ωn it is neverthe-
less seen to approximately satisfy the pinning condition
Im G2(iωn) → −πN2(0) = −1 in the limit ωn → 0.

For computational reasons the role of finite-size effects
in the present finite-temperature ED approach based on
full matrix diagonalization can at present not be checked
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Fig. 7. Imaginary part of self-energy Σ2 of wide band
for U = 2.4 eV and J = J ′ = U/4. (a) Solid (red)
and dashed (blue) curves: ED results for ns = 8 at T =
2.5, 5, 10, 20, 30 meV (from bottom); green curves: NRG re-
sults for T = 3, 10, 15, 34 meV (from top). (b) Same quantities
on expanded low-frequency scale. Black curve (+): self-energy
Σ1 of narrow band at 2.0 eV.

by going beyond the cluster size ns = 8. To analyze the
low-frequency properties of the wide band in the interme-
diate phase more closely, we have carried out NRG calcu-
lations for the effective model discussed in Section 3. Al-
though this model is more appropriate for the anisotropic
exchange treatment discussed in the next section, we use it
here (with some caution) since it is so far the only scheme
capable of providing a guideline for the two-band Hubbard
model at low finite temperatures.

In Figure 7a the ED results for ImΣ2(iωn) are com-
pared with the corresponding self-energy derived within
the NRG. The overall frequency variation of Σ2 is seen to
be remarkably similar for both methods, implying similar
spectral distributions. The most noticeable difference is
the larger dependence on temperature in the case of the
ED results. According to Figure 5, the increase in clus-
ter size from ns = 6 to ns = 8 diminishes the variation
of Σ2 with temperature and makes the minimum near
ωn ≈ 0.9 less deep. This trend indicates that larger clus-
ter sizes would bring the ED results into better agreement
with the NRG data. We point out, however, that part of
the difference should be caused by the approximate nature
of the NRG model in the case J ′ = J . As shown in the
following section, for J ′ = 0 the ED and NRG results for
Σ2 at T = 20 . . . 30 meV are in perfect agreement.
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phase, calculated within NRG approach for U = 2.4 eV, J =
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The low-frequency region of Σ2(iωn) is plotted in
greater detail in Figure 7b. In the ED calculation, the
spacing between the lowest excited level and the ground
state energy is typically 10 meV. Thus, temperatures be-
low this range will give rise to increasing finite-size effects,
precluding any meaningful analysis at low frequencies. De-
spite this limitation, the ED data follow the frequency
dependence of the NRG results rather well.

In order to provide some insight into the variation of
Σ2 at finite ωn, we compare it in Figure 7b also with the
self-energy of the narrow band Σ1 at U = 2.0 eV, i.e., just
below the Mott transition at Uc1 ≈ 2.1 eV. According to
Figure 1a, we find: Z1(U = 2.0 eV) ≈ Z2(U = 2.4 eV) ≈
0.11. Nevertheless, whereas Σ1 at U = 2.0 eV exhibits the
typical behavior expected for a strongly correlated Fermi-
liquid phase, Σ2 evidently has much larger nonlinear cor-
rections. A similar systematic difference is found between
Σ2 in the intermediate phase and the behavior the self-
energy in a single-band model for U just below the Mott
transition.

The NRG results shown in Figure 7 indicate that
Σ2(iωn) → 0 in the limit ωn → 0 and for low T . Thus, par-
ticles at EF have infinite lifetime. In addition, analogous
NRG calculations at T = 0 yield [35] non-Fermi-liquid be-
havior, in agreement with reference [21]. Thus, at small
finite iωn Im Σ2 does not vary linearly. The qualitative
agreement between the finite-T NRG and ED results seen
in Figure 7 shows that the ED data are consistent with
non-Fermi-liquid behavior.

Figure 8 shows the spectral function of the wide band
in the intermediate phase, calculated within the NRG.
Spectra of this kind were also obtained by Arita and
Held [5] for U near Uc1 within QMC/DMFT calculations
for the same two-band model for T = 0 and J ′ = J = U/4.
As mentioned above, the distribution exhibits a very nar-
row peak which satisfies the pinning condition at EF for
temperatures up to about 10 meV. Because of the sharp
central peak of A2(ω), the real and imaginary parts of the
self-energy of the wide band Σ2(ω) exhibit structure on a
similar scale. Nevertheless, the variation of ImΣ2(iωn) ob-
tained in the NRG is very smooth. Thus, the weak shoul-

der seen in the ED results for Σ2 near ωn ≈ 0.06 in Fig-
ures 3a, 5a and 7 must be attributed to finite-size effects.

The ED and NRG results discussed above demon-
strate that, in the presence of full Hund’s exchange, the
wide band above the main Mott transition at Uc1 remains
metallic, without satisfying Fermi-liquid criteria. In the
following section it will be shown that the absence of spin-
flip and pair-exchange terms enhances this trend towards
non-Fermi-liquid behavior, so that even particles at EF

acquire a finite lifetime. Thus, in both cases, the interme-
diate phase is bad-metallic.

We point out that the differences between the self-
energies for ns = 8 and ns = 6 appear mainly at rather
low temperatures, below about T = 20 meV. Since QMC
calculations also become difficult to converge in this range,
three-band ED calculations with two bath levels per impu-
rity orbital, i.e., cluster size ns = 9, should be competitive
with analogous QMC calculations — with the important
additional benefit, that the ED approach can handle full
Hund’s coupling.

6 Intermediate phase: Ising exchange

As shown in reference [13], in the absence of spin-flip and
pair-exchange contributions, the first-order Mott transi-
tion at Uc1 ≈ 2.1 eV affects the different subbands of
the Hubbard model in fundamentally different ways: the
narrow band undergoes a complete metal insulator tran-
sition, but the wide band changes from a normal metal to
a bad metal in the sense that its self-energy exhibits pro-
gressive deviations from Fermi-liquid linear ωn variation
at low frequencies. Thus, ImΣ2(iωn) → c(U) for ωn → 0,
where c(U) ≈ 0 → −∞ for U = Uc1 → Uc2. Spectral func-
tions obtained via the maximum entropy method showed
that this breakdown of Fermi-liquid behavior in the wide
band in the intermediate phase leads to a narrow pseudo-
gap near EF and to a violation of the pinning condition,
i.e., A2(0) < N2(0). The spectral function of the wide
band then acquires a characteristic four-peak structure,
with two maxima flanking the pseudogap, in addition to
the Hubbard bands at higher energies. With increasing U ,
the pseudogap becomes deeper and wider, until it turns
into a true insulating gap at Uc2 ≈ 2.7 eV. As also shown
in reference [13], the upper bad-metal to insulator transi-
tion is not a first-order transition, in contrast to the main
transition at Uc1.

In this section we discuss the temperature dependence
of the subband self-energies in the intermediate phase and
the finite-size effects associated with the limited number
of bath levels included in our ED/DMFT approach.

Figure 9 shows the subband self-energies for ns = 8
and U = 2.4 eV, assuming again J = U/4, but J ′ = 0. The
narrow band is fully insulating, so that ωn Im Σ1(iωn) →
const. nearly independently of temperature, similarly to
the case J ′ = J plotted in Figure 5. The self-energy of
the wide band, however, differs qualitatively from the be-
havior found for isotropic Hund’s coupling. Rather than
vanishing in the limit ωn → 0, Im Σ2(iωn) now approaches
a sharp minimum, which gets more pronounced towards
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Fig. 9. Imaginary part of subband self-energies Σi(iωn) in
intermediate phase for ns = 8, U = 2.4 eV, J = U/4,
J ′ = 0; Solid (red) and dashed (blue) curves: ED results for
T = 2.5, 5, 10, 20, 30 meV (from bottom). (a) ωnΣi(iωn);
(b) Σ2(iωn); green curves: NRG results as in (c). (c) Low-
frequency behavior of self-energy of wide band: red and blue
curves: ED results as in (b); green curves: NRG results for
T = 2, 4.4, 10, 20, 30 meV (from bottom). For clarity, succes-
sive curves in (c) are displaced vertically by 1.

low temperatures. Clearly, since ωn Im Σ2(iωn) → 0 at
small ωn, this band is not yet insulating. Thus, instead of
satisfying the pinning condition at EF , the spectral func-
tion of the wide band exhibits a dip or pseudogap at the
Fermi level (see below).

Figure 9b also shows the NRG results for Σ2(iωn).
They are seen to be in very good agreement with the ED
data, except at low frequencies for T ≤ 10 meV. The fact
that for T = 20 . . .30 meV there is now much better coin-
cidence between the ED and NRG results than in Figure 7
for J ′ = J indicates that, as discussed in Section 3, the
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effective model employed for the NRG is more appropri-
ate in the case J ′ = 0. The low-frequency behavior of
Im Σ2(iωn) is shown in more detail in Figure 9c. Both
the ED and NRG results reveal that the sharp minimum
of Σ2 at small ωn gets progressively deeper at low tem-
peratures, suggesting that the pseudogap in the spectral
function becomes accordingly deeper.

Analogous results for ns = 6 are given in Figure 10.
Since according to reference [16] in this case the wide
band becomes insulating near U ≈ 2.4 eV, we choose
U = 2.2 eV to illustrate the non-Fermi-liquid behavior
of this band in the intermediate phase. As for ns = 8, the
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narrow band is insulating, i.e., ωn Im Σ1(iωn) → const. at
low frequencies. The frequency variation of Σ2(iωn) is seen
to be more strongly affected by finite-size effects. Never-
theless, as in the case ns = 8, a sharp minimum is found
for ωn → 0.

Figure 11 shows the subband Green’s functions
Gi(iωn) for anisotropic Hund’s exchange at various tem-
peratures. As for the case J ′ = J shown in Figure 6, ImG1

is linear in ωn at low frequencies, since the narrow band is
insulating. On the other hand, because of the more severe
breakdown of Fermi-liquid behavior in the wide band for
J ′ = 0, with ImΣ2(iωn) �= 0 in the low-frequency limit,
the Green’s function no longer satisfies the pinning condi-
tion. Thus, ImG2(iωn) → −c(T ) with c(T ) < πN2(0) = 1,
and c(T ) → 0 for decreasing temperature. This behav-
ior implies that the spectral function of the wide band
exhibits a pseudogap at EF which becomes progressively
deeper towards low T .

This picture is fully confirmed by the NRG results
shown in Figure 12. In contrast to the narrow peak at EF

in the three-peak structure seen in Figure 8 for isotropic
Hund’s coupling, the spectra for J ′ = 0 show a pseu-
dogap which becomes deeper as T decreases. As a re-
sult, the spectral distribution now exhibits a characteristic
four-peak structure, with two maxima limiting the pseu-
dogap and two shoulders associated with the Hubbard
peaks. Spectra of this kind were first observed in the
QMC/DMFT results at T = 31 meV reported in refer-
ence [13] (see also next section). The comparison with the
spectra for J ′ = J reveals nearly identical excitations for
|ω| � J . Thus, as expected, the different treatments of
exchange interactions affect primarily the low-frequency
excitations in the metallic wide band.

7 Comparison with previous QMC/DMFT
results

In this and the following sections we compare the ED and
NRG results for J ′ = 0 with available QMC/DMFT data
in order to illustrate the consistency between these impu-
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Fig. 13. Comparison of subband self-energies Σi(iωn) in in-
termediate non-Fermi-liquid phase for U = 2.1, 2.4, 2.7 eV,
J = U/4, J ′ = 0, T = 31 meV, calculated via three different
impurity solvers: (a) ED results for ns = 8: red solid curves:
narrow band; blue dashed curves: wide band; (b) QMC results
from Figure 10 of reference [13]; red solid curves: narrow band;
blue dashed curves: wide band; (c) comparison of ED (x) and
NRG self-energies of wide band.

rity treatments and to explore further the role of finite-size
effects in the ED approach.

As shown in reference [13], in the absence of spin-
flip and pair-exchange terms, purely metallic and insu-
lating phases exist for U < Uc1 ≈ 2.1 eV and U >
Uc2 ≈ 2.7 eV, respectively. Figure 13 shows a comparison
of subband self-energies at three representative Coulomb
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energies within the intermediate ‘bad-metal’ non-Fermi-
liquid region. The ED results for ns = 8 are seen to be in
excellent agreement with the NRG self-energies, confirm-
ing the validity of the effective model in the intermedi-
ate phase for J ′ = 0. Moreover, both schemes agree very
well with the QMC/DMFT self-energies reported in refer-
ence [13] for T = 31 meV. Minor differences between the
QMC and ED/NRG results are found only in the steep-
est parts of Σi close to the first Matsubara frequency. (In
contrast to the QMC calculations which are carried out
at discrete Matsubara frequencies, the NRG self-energy is
available continuously as a function of frequency. The ED
self-energies could in principle also be obtained at arbi-
trary iω but were calculated here at iωn. This explains
the slightly different form of the curves plotted in panel
(c). At iωn the ED and NRG data nearly coincide.)

The overall trend obtained previously within the
QMC/DMFT is fully confirmed by the new ED and NRG
calculations: The narrow band is insulating throughout
this range of Coulomb energies, whereas the wide band
changes gradually from metallic to insulating via pro-
gressive non-Fermi-liquid behavior. Thus, for small ωn,
Im Σ2(iωn) → c(U), where c(U) → −∞ at U ≈ 2.7 eV.

Evidently, despite their intrinsic numerical uncertain-
ties, the three complementary impurity solvers: ED, NRG
and QMC provide perfectly consistent descriptions of
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Fig. 15. Spectral distributions of subbands in intermediate
phase, calculated within QMC/DMFT for U = 2.4 eV, J =
U/4, J ′ = 0, T = 31 meV. Red curve: metallic wide band;
magenta curve: insulating narrow band; blue and black curves:
bare densities of states. From Figure 11b of reference [13].

the electronic properties of the orbital-selective phase for
Ising-like exchange.

Since the temperature T = 31 meV in these results
is relatively high, finite-size effects tend to be less pro-
nounced than in the cases discussed in the previous sec-
tions at lower T . This is illustrated in Figure 14 where we
compare the above ED results for ns = 8 with those for
ns = 6. The self-energies of the narrow band are nearly
identical and satisfy ωnΣ1(iωn) → const. at low frequen-
cies. This is plausible since the additional zero-energy bath
level for ns = 8 carries very little weight in the insulating
state. Because of breakdown of Fermi-liquid behavior, the
self-energy of the wide band approaches a finite value in
the limit ωn → 0. The differences between the results for
ns = 6 and ns = 8 are very small as long as this band
is either nearly metallic, like at U = 2.1 eV, or nearly
insulating, like at U = 2.7 eV. Slightly larger differences
are found only in the middle of the bad-metallic region
near U = 2.4 eV. As discussed in the preceding section,
the spectral function then has a more complicated four-
peak structure as a result of the narrow pseudogap at EF ,
which cannot be adequately represented using only two
bath levels. This region could possibly be even more ac-
curately described by using four bath levels for the wide
band and two levels for the insulating narrow band, main-
taining the total ns = 8.

We close this section by showing in Figure 15 the spec-
tral distributions of both subbands, as calculated within
the QMC/DMFT and the maximum entropy method [13].
The spectrum of the bad-metallic wide band can be com-
pared with the corresponding NRG spectra plotted in
Figure 12. Both distributions exhibit the marked four-
peak structure induced by the pseudogap and the Hub-
bard bands. The low-frequency region is seen to be in
excellent agreement. Both methods coincide in that, at
T ≈ 30 meV, the interacting density of states at EF of
the wide band is only about one third of the noninteract-
ing one. The slightly larger differences at higher energies,
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in particular, the position and relative weight of the Hub-
bard bands, may be caused by the choice of fitting param-
eters in the maximum entropy procedure, and by the less
accurate nature of the NRG approach at high energies.

8 Comparison with QMC/DMFT results
for W2 = 10W1

The breakdown of Fermi-liquid behavior in the orbital-
selective phase with Ising-like exchange was recently also
studied by Biermann et al. [21] for the same two-band
Hubbard model as above, except for W1 = 0.2 eV and
W2 = 2 eV. The subbands were also assumed to be
non-hybridizing and half-filled. QMC/DMFT calculations
were carried out for T = 1/120 . . .1/40 eV, U = 0.8 eV,
J = 0 and J = U/4, with J ′ = 0, i.e., in the absence of
spin-flip and pair exchange terms. For J = 0 as well as
J = U/4, the self-energy of the narrow band was found to
diverge at low frequencies, demonstrating that this band is
insulating since W1 � U . The wide band is in the interme-
diate orbital-selective region between the purely metallic
and insulating phases since U � W2. The self-energy of
this band showed a striking variation with the magnitude
of J : for J = 0, Σ2(iωn) ∼ iωn at low frequencies, as ex-
pected for Fermi-liquid behavior. For J = U/4, however,
Im Σ2(iωn) → const. ≈ −0.09 nearly independently of
temperature for T = 1/120 . . .1/40 eV, indicating break-
down of Fermi-liquid properties. Accordingly, the pinning
condition N2(0) = A2(0) was found to be satisfied for
J = 0, but not for J = U/4. These results are fully
consistent with the trend discussed in reference [13] for
W1 = 2 eV and W2 = 4 eV.

To check the accuracy of our finite-T ED approach we
have applied it to the case investigated in reference [21].
To provide a picture of the Mott transitions in this two-
band system we show first in Figure 16 the variation of
Zi(U) for three different treatments of Hund’s exchange.

In all cases the narrow band becomes insulating at about
Uc1 = 0.3 . . .0.4 eV. However, the range and nature of
the orbital-selective phase of the wide band, Uc1 < U <
Uc2, depend sensitively on the magnitudes of J/U and
J ′/U . For J = J ′ = 0 the upper transition occurs for Uc2

slightly larger than W2, with a pronounced hysteresis loop
indicative of first-order behavior. A very weak hysteresis
is found also for J = J ′ = U/4, with Uc2 ≈ 1.5 eV, similar
to the one in Figure 2 near U ≈ 3 eV. Finally, for J = U/4
and J ′ = 0, Uc2 ≈ 1.2 eV without evidence of first-order
behavior. (The latter result is consistent with Uc2 ≈ 2.4 eV
in Fig. 2 of Ref. [16].) Although Z2(U) ≈ 0.2 . . .0.8 at
U = 0.8 eV, i.e., for Uc1 � U � Uc2, the analysis of
the self-energy reveals fundamentally different electronic
properties of the wide band in this region.

This is illustrated in Figure 17 which shows ImΣ2(iωn)
for ns = 8 and ns = 6. The ED results for ns = 8
are in excellent agreement with the QMC data [21] for
J = J ′ = 0 as well as J = U/4, J ′ = 0, with the ex-
ception of small finite-size effects at the lowest Matsubara
frequencies and lowest temperature. (Since W2 = 2 eV,
T = 1/120 . . .1/40 eV in these calculations corresponds
to about T = 16 . . .50 meV in the case W2 = 4 eV consid-
ered in the preceding sections.) Also, the variation with T
is in our results slightly more pronounced than in the case
of the QMC/DMFT.

For ns = 6 the ED results exhibit larger finite-size ef-
fects, as shown in Figure 17b. The variation with temper-
ature is in this case also larger than for ns = 8. Evidently,
the subtle features of spectral functions in the interme-
diate phase are not so well represented by including only
two bath levels. Nevertheless, the qualitative difference
between Fermi-liquid behavior for J = 0 and the clear
deviation from this behavior for J = U/4 are very well
reproduced by these ns = 6 ED/DMFT calculations.

For completeness we show in Figure 17c the ns = 8
ED/DMFT results for isotropic Hund’s coupling, i.e.,
J ′ = J = U/4. This case is not yet accessible within
QMC/DMFT because of sign problems at low tempera-
tures. The inclusion of spin-flip and pair-exchange terms
is seen to restore the limiting behavior Σ2(iωn) → 0 for
ωn → 0. Nevertheless, compared to the case J ′ = J = 0
shown in (a), Σ2 now increases much more rapidly at small
finite frequencies, similarly to the data shown in Figures 5
and 7. (As argued in Sect. 5, the shoulder near ωn ≈ 0.06
is caused by finite-size effects.) Thus, instead of quasipar-
ticles with weight Z2 ≈ 0.8 for J = J ′ = 0, finite Hund’s
exchange with J ′ = J = U/4 supports a state of infinite
lifetime at EF , but does not satisfy Fermi-liquid crite-
ria at ω > 0. This picture is consistent with the T = 0
ED/DMFT results by Biermann et al. [21]. The spectral
function of the wide band therefore should exhibit a nar-
row peak at EF , similar to the one shown in Figure 8 for
U = 2.4 eV.

9 Comments on IPT/DMFT results

In reference [13] we reported DMFT calculations for the
two-band Hubbard model within QMC and iterated per-
turbation theory (IPT) [38]. For T ≥ 20 meV (QMC) and
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Fig. 17. (a) Imaginary part of self-energy of wide band for
J = 0 and J = U/4 in intermediate phase for U = 0.8 eV, J ′ =
0, calculated within ED/DMFT with ns = 8. W1 = 0.2 eV,
W2 = 2.0 eV. Red solid, blue dashed, and black dotted curves:
T = 1/120 eV, T = 1/80 eV, and T = 1/40 eV, respectively.
The dots denote the results for T = 1/120 eV obtained in
reference [21]. (b) Same as (a) except for ns = 6. (c) Same as
(a) except for J ′ = J = U/4.

T ≥ 10 meV (IPT) both approaches were shown to yield
a consistent picture of the Mott transition, in the sense
that both exhibit a single first-order transition at which
the narrow band becomes insulating and the wide band
begins to show progressive bad-metallic behavior. This
band becomes fully insulating at a higher Coulomb energy
in a non-first-order manner. As shown via ED/DMFT at
T = 0 in reference [14] and at T > 0 in reference [16],
the nature of this upper transition depends in a critical
way on the treatment of onsite exchange interactions. In
the absence of spin-flip and pair-exchange terms it is con-

tinuous, consistent with the QMC results, while for full
Hund’s coupling it becomes first-order.

The question then arises whether the IPT approach
also supports this picture. In fact, as pointed out in refer-
ence [16], it is surprising that the IPT (for T ≥ 10 meV)
gives only one first-order transition even though spin-flip
and pair-exchange terms are included. It can easily be
shown, however, that to second-order in the Coulomb in-
teraction the subband self-energies with and without spin-
flip and pair-exchange are the same, except for a slightly
different relation between U and J . Thus, J ′ = J = 0.25 U
gives the same result as J ′ = 0 and J ≈ 0.22 U . Correc-
tions to the simple second-order diagram via renormal-
ization of subband energies to yield the correct atomic
limit [37,39] are also insensitive to the choice of J ′ for the
present two-band model.

To resolve this puzzle we have extended the IPT cal-
culations reported in reference [13] to temperatures T <
10 meV and found indeed a tiny hysteresis loop also at
the upper Mott transition, with a critical temperature
of approximately Tc2 ≈ 5 meV, i.e., significantly lower
than the critical temperature of the lower Mott transition,
Tc1 ≈ 50 meV. These findings suggest that present formu-
lations of IPT are too simple to deal with the full complex-
ity of Hund’s exchange. Diagrams beyond second-order are
required to distinguish more clearly between J ′ = J and
J ′ = 0 treatments [36].

10 Summary and outlook

Finite-temperature ED/DMFT studies are carried out in
order to explore the usefulness of this approach for multi-
band systems. The important feature here is that onsite
Coulomb and exchange interactions are fully included.
Since in the past ED has been used mainly for single-band
systems, a particular aim of this work is to illustrate the
dependence of self-energies on the cluster size and to test
the range of applicability of this method. As an example,
we focus on the Hubbard model for two bands of different
widths and investigate the metal insulator transition as a
function of Hund’s exchange.

The surprising and potentially very useful result of
this work is that even a cluster size of ns = 6, with only
two bath levels per impurity orbital, provides a qualita-
tively correct picture in all of the important phases of the
T/U phase diagram. Moreover, finite-size effects are sub-
stantially reduced for ns = 8, i.e., using one extra bath
level per impurity orbital. Thus, in the phase just be-
low the main first-order Mott transition, both subbands
exhibit clear metallic properties, albeit with strongly re-
duced quasi-particle weights. The intermediate region be-
tween the purely metallic and insulating phases depends
in a subtle manner on the exchange interactions included
in the ED calculation. For full Hund’s coupling coexist-
ing metallic and insulating subbands are found, where
the wide band exhibits infinite lifetime at EF , but non-
Fermi-liquid behavior at finite frequencies. For Ising-like
exchange, this breakdown of Fermi-liquid behavior is en-
hanced, giving finite lifetime even at EF .
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To explore the influence of finite-size effects in the two-
band ED/DMFT approach NRG calculations were per-
formed for a simplified effective model suitable to describe
the wide band in the intermediate phase. Both for full
Hund’s coupling and Ising-like exchange, very good agree-
ment with the ED results is found for temperatures in the
range T = 20 . . .30 meV. At lower T , larger differences ap-
pear on a quantitative level at low frequencies. Neverthe-
less, the important qualitative differences between various
phases, especially the characteristic low-frequency varia-
tion of the self-energy in the two types of non-Fermi-liquid
regions for isotropic and anisotropic exchange coupling,
are fully reproduced by the ED approach, both for ns = 6
and ns = 8.

To test the accuracy of the two-band ED approach
we also have applied it to models studied earlier within
QMC/DMFT, neglecting spin-flip and pair-exchange.
Nearly quantitative agreement is obtained for a cluster
size ns = 8, but even the ED results for ns = 6 are found
to be qualitatively reliable.

The present ED approach utilizes full diagonalization
of the impurity Hamiltonian. Since at low temperatures
only a limited range of excited states is relevant for the
local Green’s functions and self-energies it should be very
useful to generalize finite-T Lanczos one-band methods
[22,23] in order to bridge the gap between the present
work and the true T = 0 limit, and to apply the finite-
temperature ED/DMFT approach to realistic two-band
and three-band materials.

One of us (A.L.) likes to thank A.I. Lichtenstein for parts of
the multi-band ED code. Some of the ED and NRG DMFT cal-
culations were carried out on the IBM supercomputer (JUMP)
of the Forschungszentrum Jülich.
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